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Note 

A New Form of Artificial Viscosity: Postscript* 

In a previous paper [l], we introduced a new form of artificial vicosity (q), 
which performs better in a one-dimensional Lagrangian hydrodynamics code by 
substituting the Rankine-Hugoniot (R-H) relations directly into the form originally 
suggested by Von Neumann and Richtmyer [2]. The new form was given by the 
following: 

qr, = pc2 AU d-A/J d(l/p). 0) 

However, this new form is difficult to program in multidimensional or Eulerian 
programs, because of the presence of interfaces between different materials. Across 
interfaces, density (or energy) gradients cannot be used in the R-H relations. This 
note will suggest forms that will not have such difficulties. 

From the first R-H equation, we have 

P& = &-dp (A -j-l, 

where t is the shock speed, p. is the unshocked material density, and Ap and A( l/p) 
are the changes in pressure and inverse density across the shock. From the second 
R-H equation we have 

Au = d-4 A(l/p), (3) 

where A U is the change in material velocity across the shock. Combining (1) and (2) 
yields 

AU=dq 
Pot . 

(4) 

Since pressure is a continuous variable across interfaces, this would be a convenient 
relation to program into the formulation for q. Unfortunately, k is usually an 
unknown. Instead, let us examine the replacement of A U in a q as follows: 

AP Aua-. 
PCS 

(5) 

* This work was performed under the auspices of the U.S. Atomic Energy Commission. 
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For physical systems involving potentials, such as gravitational potentials in 
astrophysical systems, it might be necessary to use only that portion of dp which 
can give rise to velocity changes (i.e., that portion not balanced by a potential 
gradient). The sun is an example of a system possessing a large pressure gradient 
in balance with a gravitational potential-yet, there is no velocity change. 

For infinitely weak shocks (sound waves), .4 U = dp/(pc,). However, for strong 
shocks, pcs will be smaller than p,,& ahead of the shock, but the opposite will be 
true behind the shock. Averaged over a shock of finite width, one might anticipate 
that using (5) in a 4 formulation would not change the overall behavior too much. 
However, it would produce increased damping at the leading edge of a shock, 
and less at the trailing edge. Numerical experiments indicate that a good form of q is 

qE = pc2 ) Au js/z $ 
I I 

‘12. 
s 

A larger power in the exponent of (Ap/pc,) results in a noisy solution, consistent 
with the fact that (5) results in less damping at the shock’s trailing edge. The q 
in (6) is sensitive to gradients in zone quantities (pressure) and grid quantities 
(velocities). Calculations using (6) give more accurate results than the standard 
q (q = pea 1 AU 13 at interfaces and reflecting walls, and anomalous heating is 
essentially eliminated for an adiabatically compressed sphere (which has no 
pressure gradients). 
K. Trigger [3] has suggested that time derivatives might also be programmed 
conveniently in various computer codes. However, one wants this time derivative 
to be related to the spatial derivative, so that the shock will still be spread over a 
certain number of zones. Thus, one might take advantage of the characteristic 
solution nature of shock wave propagation. Then, for plane wave shocks we can 
use 

Af 1 Af -=--9 
Ax 5 At (7) 

since f = f(x - it), where f is velocity, pressure, density, etc. Again, it might be 
necessary to use such a substitution to a low order, if 8 is approximated by c, . 

The form for qE is generally appropriate for Eulerian and Lagrangian cydes. A 
more accurate form for Lagrangian codes is possible by using the time derivative 
just mentioned in (7). Let 

AU/P) 1 WP) 
dx*--’ c, At (8) 

Then we obtain by modifying qP : 

q,=pc2/AU/ Ap + 41/d 
c, dt’ 
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As was the case with qe , &I2 has been approximated by ci”. However, the 
approximation of p,, by p has not been necessary. Because of this (and because 
damping is more sensitive to zonal quantities), one might anticipate that qL 
would produce more accurate results than qE , for Lagrangian calculations. 

TABLE I 

Shock Reflection at a Rigid Wall 

+ 0.2~~. 1 AU la“ I - Ap I 

114 

PC, 

Pressure Energy 

Zone (Mbar) (Mbar cc/cc) 

1” 1.93 1.10 

2 1.94 0.95 

3 7.92 0.87 

4 1.94 0.88 

5 1.95 0.91 

6 7.93 0.93 

7 1.96 0.94 

8 1.94 0.95 

9 7.96 0.96 

10 7.96 0.96 

11 1.95 0.95 

a Zone 1 is next to the reflecting wall. 

In Table I we present the qE results of a y = 1.4 gas @,, = 0.008 g/cc, 
p,, = 1.6 x 1O-5 Mbar), after an infinite pressure (1 Mbar) has been applied to 
one end of a one-dimensional slab and bounced off a perfectly reflecting wall. 
The analytic solution for the reflected pressure is 8.0 Mbar, and for the reflected 
energy, 20/21 (approximately = 0.95) Mbar-cc/cc. Thus, the worst error in the 
energy is approximately 15 %. The same problem, run with the standard q (using 
the same constants to multiply the quadratic and linear components), resulted 
in an error of 60 %. The improved q reported earlier [l], 

(99 = PC2 Ll u d--dP 41/P)), 

resulted in an error of 10 %. Thus, the thermodynamics are almost as good as that 
obtained with qD, and the programming is much simpler. For the one-dimensional 
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Lagrangian code used here, the programming is only important for one-zone 
regions. But for other codes (Eulerian and multidimensional) the significance 
of simpler programming may be quite important. There are many kinds of such 
computer programs, and I have not attempted any investigations using Eq. (5) 
with any of them. A wide variety of tests were run with a one-dimensional 
Lagrangian code, in addition to the one presented here in the example; in every 
case the results were like those of this example. That is, the new q of Eq. (6) was 
almost as good as qe , and much better than qu . Similarly the results for qt were 
better than the results for qE , but not as good as those for qn . 

Current experiments indicate that qr. may be attractive for elastic calculations, 
even though pressure is not always continuous across material interfaces. For 
such calculations it has been advantageous to replace 

Axw by Ax(V - U). 
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